

It is assumed that the dependence of the electric field in the longitudinal direction is $e^{-jk_z z}$, where k_z is the corresponding propagation constant in the z-direction. The formulation involves representing the longitudinal fields using nodal basis functions and the transverse fields using vector basis functions [4].

After solving the eigenvalue problem at each frequency point, the propagation constant in the z-direction and the corresponding normalized transverse and longitudinal fields inside the structure can be obtained. Although the definition of the characteristic impedance is not unique for inhomogeneous waveguide structures, the voltage-power definition was chosen for the current analysis.

III Numerical Results

Two commonly used structures in MMIC designs, the CPW and microstrip, whose geometries are shown in Figure 1, were modelled using the FEM. In practical circuit designs, it is important that finite conductor thickness be accounted for. This was incorporated in the analysis at values of $t = 0.5\mu\text{m}$ and $3\mu\text{m}$ for both CPW and microstrip configurations. The dispersion characteristics of the dominant mode are examined as a function of frequency for configurations with and without a thin metal-insulating layer.

The method implemented in this paper was validated by comparing results with the SDA. Figure 2 illustrates the comparison between the two methods in the case of a CPW with no conductor thickness. The effective dielectric constant obtained using the two methods are in excellent agreement for cases with and without the Si_3N_4 .

Analysis of the CPW structure has been further investigated for various heights (h_2) of a thin metal-insulating layer. Figures 3 and 4 illustrate the corresponding dominant mode dispersion characteristics (ϵ_{reff} and Z_c , respectively) for a conductor thickness of $0.5\mu\text{m}$. While holding the total substrate height ($h_1 + h_2$) constant, the thickness of the Si_3N_4 layer (h_2) is varied from $0.2\mu\text{m}$ to $2.0\mu\text{m}$. It is observed that both the ϵ_{reff} and Z_c of the dominant mode change quite

significantly when the Si_3N_4 layer is varied from 0.2 to $2.0\mu\text{m}$. Specifically, at low frequencies the ϵ_{reff} changes from ≈ 6.75 to ≈ 5.35 , whereas the Z_c changes from $\approx 50.0\Omega$ to $\approx 56.0\Omega$. In many MMIC applications and designs, such significant variations in the effective dielectric constant and characteristic impedance must be accounted for; otherwise, unnecessary dispersion and/or reflections due to transmission line mismatch will result.

The same CPW configuration, shown in Figure 1, was considered this time using an increased conductor thickness of $3\mu\text{m}$. The dispersion characteristics, ϵ_{reff} and Z_c , are illustrated in Figures 5 and 8, respectively. Both these figures show a similar trend to the ones presented for the previous case; however, both ϵ_{reff} and Z_c are now shifted to lower values due to the increased conductor thickness. In addition, the wave propagation becomes slightly more dispersive.

Results for the microstrip structure, as shown in Figure 1, are also computed using the same conductor thicknesses ($0.5\mu\text{m}$ and $3.0\mu\text{m}$) and the same thin insulating layer of Si_3N_4 previously used for the CPW. The dominant mode dispersion characteristics for both cases are shown in Figures 6, 7 and 9, 10. Similar observations are seen for the microstrip as were noted for the CPW configuration. Increasing the height of the insulating layer results in a decrease in ϵ_{reff} and increase in Z_c . On the other hand, increasing the conductor thickness results in a decrease in both ϵ_{reff} and Z_c .

IV Conclusions

A full-wave analysis using a finite element formulation of two common MMIC transmission lines has been presented. It has been shown that the addition of a thin metal-insulating layer, such as Si_3N_4 , can significantly change the propagation characteristics in CPW and microstrip structures. In addition, an increase in the conductor thickness results in lower values of the effective dielectric constant and characteristic impedance as well as higher dispersion.

REFERENCES

- [1] M. R. Lyons, J. P. K. Gilb, and C. A. Balanis, "Enhanced dominant mode operation of a shielded multilayer coplanar waveguide via substrate compensation," *IEEE Trans. Microwave Theory and Tech.*, vol. MTT-41, pp. 1564–1567, Sep. 1993.
- [2] R. A. Pucel, "Design considerations for monolithic microwave circuits," *IEEE Trans. Microwave Theory and Tech.*, vol. MTT-29, pp. 513–534, 1981.
- [3] A. C. Reyes, S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder, and H. Patterson, "Coplanar waveguides and microwave inductors on silicon substrates," *IEEE Trans. Microwave Theory and Tech.*, vol. MTT-43, pp. 2016–2022, Sep. 1995.
- [4] J.-F. Lee, D. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," *IEEE Trans. Microwave Theory and Tech.*, vol. MTT-39, pp. 1262–1271, Aug. 1991.

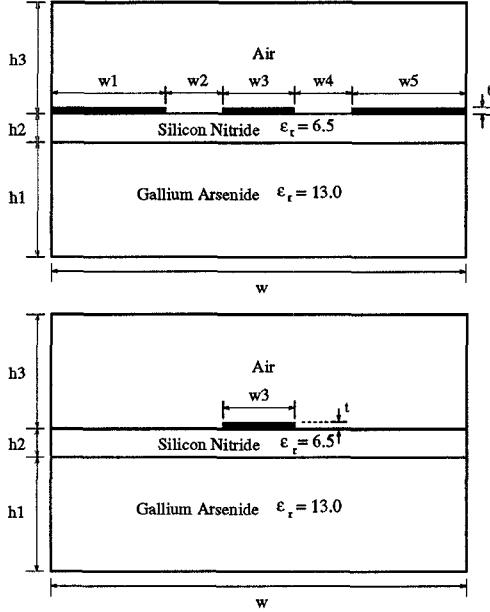


Figure 1: Geometries for the CPW and microstrip. The dimensions are the following: $W=100 \mu\text{m}$, $W_1 = W_5=25 \mu\text{m}$, $W_2 = W_4=20 \mu\text{m}$, $W_3=10 \mu\text{m}$, $h_1 + h_2=20.2 \mu\text{m}$, $h_3=20 \mu\text{m}$.

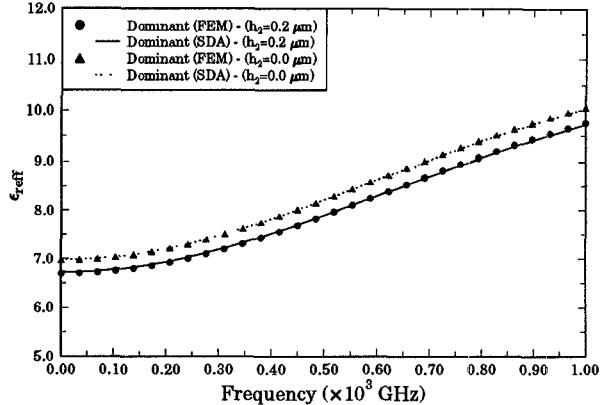


Figure 2: FEM and SDA dispersion curve comparison for the dominant mode of a CPW assuming no conductor thickness.

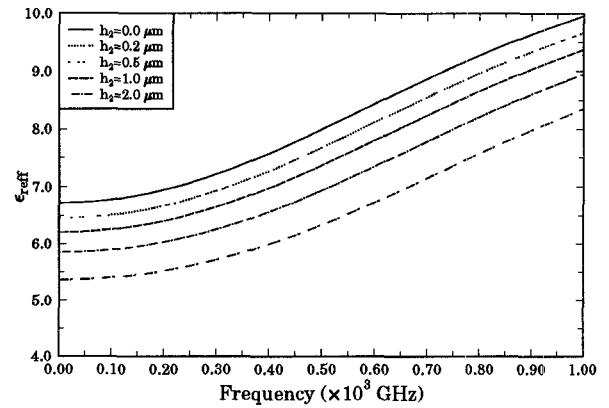


Figure 3: Effective dielectric constant curves for the dominant mode of a CPW with finite conductor thickness ($t = 0.5 \mu\text{m}$).

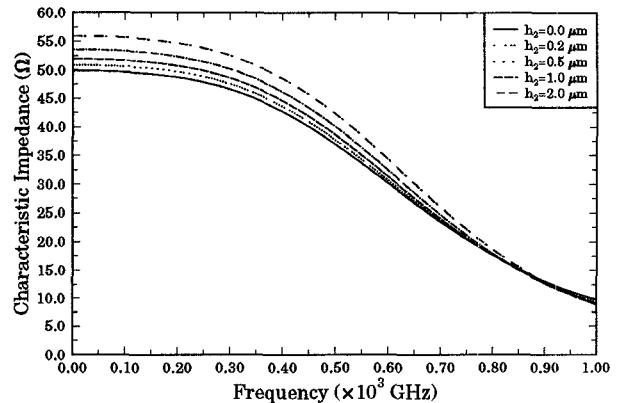


Figure 4: Characteristic Impedance curves for the dominant mode of the CPW with finite conductor thickness ($t = 0.5 \mu\text{m}$).

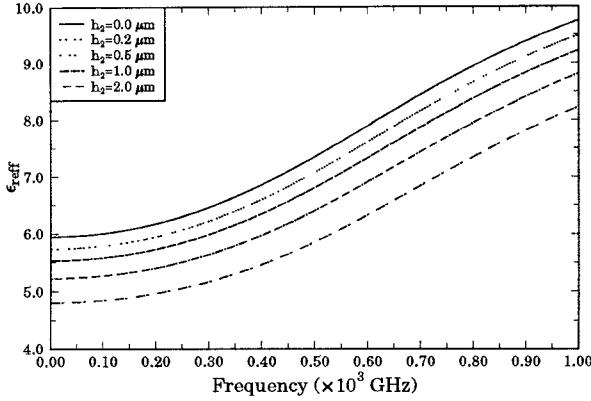


Figure 5: Effective dielectric constant curves for the dominant mode of a CPW with finite conductor thickness ($t = 3\mu\text{m}$).

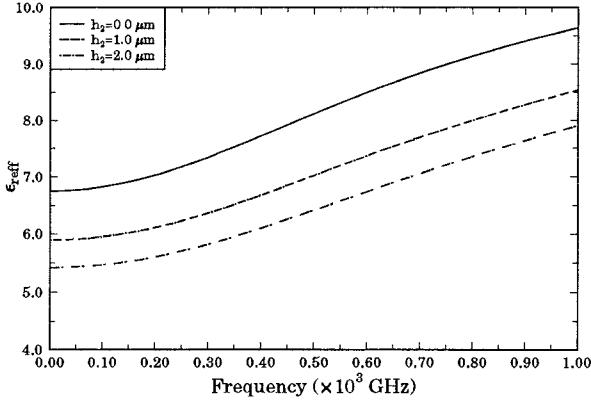


Figure 6: Effective dielectric constant curves for the dominant mode of a microstrip with finite conductor thickness ($t = 0.5\mu\text{m}$).

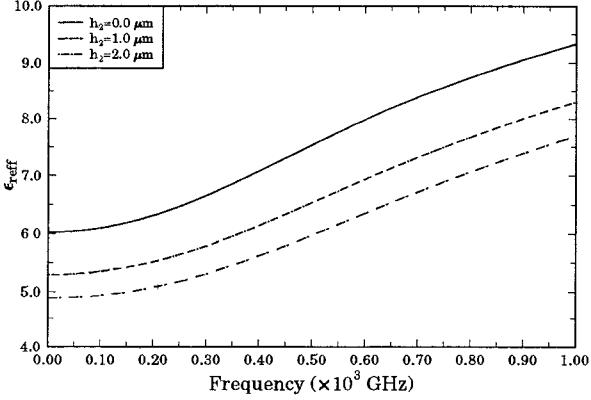


Figure 7: Effective dielectric constant curves for the dominant mode of a microstrip with finite conductor thickness ($t = 3\mu\text{m}$).

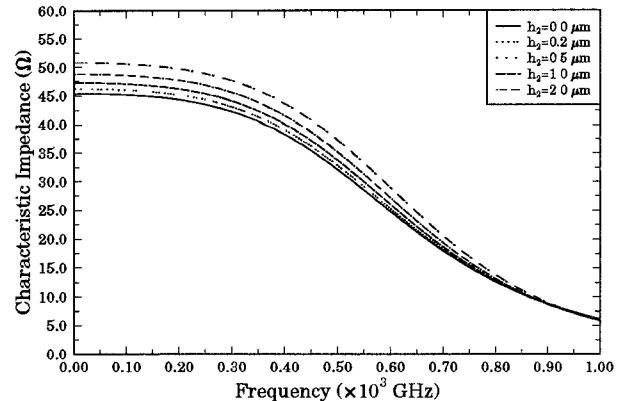


Figure 8: Characteristic Impedance curves for the dominant mode of the CPW with finite conductor thickness ($t = 3\mu\text{m}$).

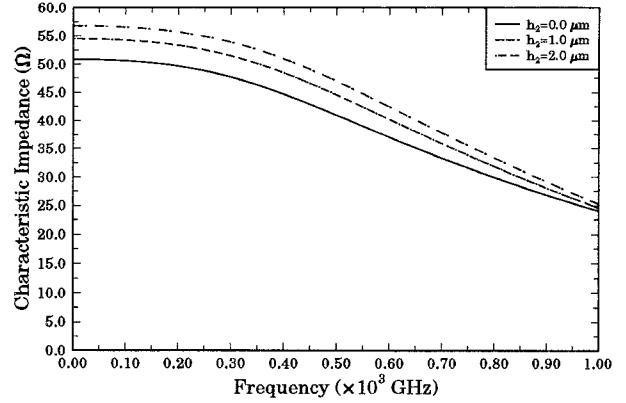


Figure 9: Characteristic Impedance curves for the dominant mode of a microstrip with finite conductor thickness ($t = 0.5\mu\text{m}$).

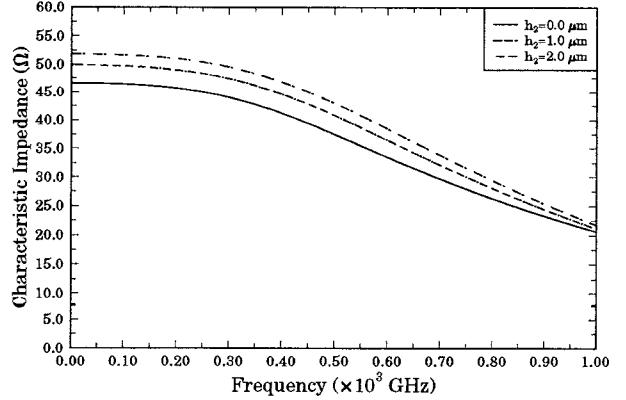


Figure 10: Characteristic Impedance curves for the dominant mode of a microstrip with finite conductor thickness ($t = 3\mu\text{m}$).